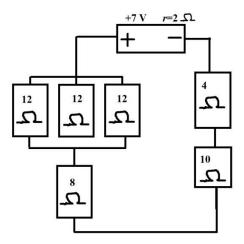
| Name:                                                                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Class:                                                                                                                                                   |  |  |
| Due Date:                                                                                                                                                |  |  |
| Physics Topic 50 – Internal Resistance                                                                                                                   |  |  |
| Answer the following questions. The solutions to this worksheet can be found on the YouTube channel Go Physics Go.                                       |  |  |
| 1. C: Define <i>internal resistance r</i> . Units?                                                                                                       |  |  |
|                                                                                                                                                          |  |  |
| 2. C: Define the following variables for the equation $\varepsilon = I(R + r)$ . Draw an image to describe this equation.                                |  |  |
| 3. E: A dry cell has an emf of 3.04 V. Its terminal potential drops to zero when a current of 50.0 A passes through it. What is its internal resistance? |  |  |
|                                                                                                                                                          |  |  |
|                                                                                                                                                          |  |  |
|                                                                                                                                                          |  |  |
|                                                                                                                                                          |  |  |

| 4. | E: A cell has an emf of 145 V. This means that its terminal voltage is 145 V |
|----|------------------------------------------------------------------------------|
|    | when no current flows through it. When the terminal potential is 120. V the  |
|    | current through the circuit is 25.0 A.                                       |

- a. What is the internal resistance of the cell?
- b. What will be the terminal potential when the current is 12.0 A?
- 5. E: A cell with internal resistance is connected to a 3.00  $\Omega$  resistor. Determine the internal resistance r of the cell if the current going through it is 2.00 Amps when its  $\varepsilon$  is 12.0 V.

6. E: A battery with internal resistance is connected to a variable resistor. When the resistor has a resistance R of 12.0  $\Omega$  the current is 2.00 Amps. When the resistor has a resistance R of 6.00  $\Omega$  the current is 3.00 Amps. Determine the emf  $\varepsilon$  and internal resistance r of the battery.

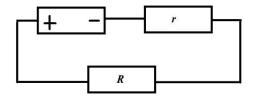

| 7. | E: While attached to a 2.00 $\Omega$ resistance the terminal voltage of a battery is |
|----|--------------------------------------------------------------------------------------|
|    | measured to be 5.20 V. The open circuit voltage of this same battery is              |
|    | measured to be 6.70 V.                                                               |

a. What is the internal resistance of the battery?

b. What will be the maximum current that can be delivered by the battery?

8. E: A battery is known to have an emf of 4.60 Volts and an internal resistance of  $2.20 \Omega$ . What will be the terminal voltage of this battery while connected to a load of  $7.80 \Omega$ ?

9. E: Consider the circuit below:




a. What is the total resistance of this circuit?

b. What will be the total current flowing through this circuit?

- c. What will be the current flowing through each 12.0  $\Omega$  resistor?
- d. What will be the voltage drop across each of the 12.0  $\Omega$  resistors?
- e. What will be the terminal voltage of the battery?
- f. What will be the voltage drop across the  $10.0 \Omega$  resistor?

10. E: A battery, which has an emf of 6.00 V and an internal resistance  $r = 0.500 \Omega$ , is connected to a load which has a resistance of  $R = 3.50 \Omega$ .



a. What will be the current flowing in this circuit?

- b. What will be the voltage drop across the load?
- c. How much power is being supplied by the battery?
- d. How much power is being consumed by the load?
- e. How much power is being consumed by the internal resistance of the battery?
- f. With what efficiency is power being delivered to the load in this circuit?