Name: _
Class: _
Due Date:

Physics Topic 7B – Center of Mass with Calculus

- 1. E: Consider a rod which has a length of L = 56 cm and which has a mass density which varies with length according to the formula $\lambda = (28 + 44l^2)$ kg.
 - a. What is the total mass of this rod?

b. Where is the center of mass of this rod?

- 2. E: Consider a rectangular plate x = 35.0 cm long and y = 15.0 cm wide where the surface mass density of the plate varies with the x-coordinate according to the equation $\sigma = (120 2800x^3) \frac{\text{kg}}{\text{m}^2}$.
 - a. What is the total mass of this plate?

b. Where is the center of mass of this rectangular plate?

- 3. E: Consider a rectangular plate x = 82.0 cm long and y = 22.0 cm wide where the surface mass density of the plate varies with the x-coordinate according to $\sigma = (150 + 3600x^2) \frac{\text{kg}}{\text{m}^2}$. What is the total mass of this plate?
 - a. What is the total mass of this plate?

b. What are the coordinates of the center of mass of this rectangular plate?

4. E: Consider a disc which has a radius of R=12.0 cm and which has a mass density σ which varies with the radius of the disc according to the function $\sigma=(18.0+36r^2)\frac{\text{kg}}{\text{m}^2}$. What is the total mass of this disc?

5. E: Consider a thick ring with an inner radius of $r_1 = 6.00$ cm and an outer radius of $r_2 = 16.0$ cm where the mass per unit area varies according to $\sigma = (85.0 + 25.0r^2) \frac{\text{kg}}{\text{m}^2}$. What is the total mass of this ring?

6. E: Consider a disc which has a radius of R=18.0 cm and which has a mass density which varies with the radius of the disc according to the function $\sigma=(18.0+5400r^3)\frac{\text{kg}}{\text{m}^2}$. What is the total mass of this disc?