Name: _____

	Class:
	Due Date:
	Physics Topic 28B – Simple Harmonic Motion with Calculus
A	nswer the following questions. The solutions to this worksheet can be found on the YouTube channel Go Physics Go.
1.	C: Math review: Describe the significance of the variables A , B , C , and D in the equation $y = A \sin(Bx + C) + D$.
2.	E: An object is undergoing simple harmonic motion with a period of 0.255 s, a maximum displacement of 5.28 cm, and a phase angle of $\frac{\pi}{4}$.
	a. Determine the displacement of the object after 1.25 s.
	b. Determine the velocity of the object after 2.50 s.
	c. Determine the maximum speed of the object.

3. C: Derive the equations of motion, energy, and speed for simple harmonic motion.

4.		A mass of 0.765 kg undergoes simple harmonic motion with a maximum splacement of 0.232 m and a frequency of 0.652 Hz.
	a.	Determine the period of the motion.
	b.	Determine the total energy.
	c.	Determine the potential energy of the mass when it is 0.100 m from its equilibrium position.
	d.	Determine the kinetic energy of the mass when it is 0.100 m from its equilibrium position.
	e.	Determine the speed of the mass when it is 0.100 m from its equilibrium position.

f. Determine the maximum speed of the mass.

Optional for math lovers

The small angle approximation ($\theta < 10^{\circ}$) for the period of a pendulum is

$$T = 2\pi \sqrt{\frac{l}{g}}$$

The exact solution for any angle is given from the video below:

Exact Solution of the Nonlinear Pendulum

Flammable Maths

 $\underline{https://www.youtube.com/watch?v=efvT2iUSjaA}$

Watch and take notes from the video.