Name: _____

	Class:
	Due Date:
	Physics Topic 26A Thermodynamics – First and Zeroth Law
Answer the following questions. The solutions to this worksheet can be found on the YouTube channel Go Physics Go.	
1.	C: Define thermodynamics.
2.	C: Define a <i>closed system</i> .
3.	C: Define an isolated system.
4.	C: State the first law of thermodynamics.
	C: Consider a system filled with an ideal gas and the equation for the law of conservation of energy $Q = \Delta U + W$.
	a. Define ΔU . What is the meaning if $\Delta U > 0$ Joules? $\Delta U = 0$ Joules? $\Delta U < 0$ Joules?

b. Define W. What is the meaning if W > 0 Joules? W = 0 Joules? W < 0 Joules?

c. Define Q. What is the meaning if Q > 0 Joules? Q = 0 Joules? Q < 0 Joules?

- 6. E: 8.42×10^3 J of heat is given to a closed system while the system does 4.37×10^3 J of work. What is the change in internal energy of the system during this process?
- 7. E: A closed system absorbs 2.33×10^3 J and at the same time 1.24×10^3 J of work is done on it. What is the change in internal energy of the system during this process?
- 8. E: 9.97×10^3 J is removed from a gas held at a constant volume. What is the change in internal energy of the system during this process?
- 9. E: 246 J of thermal energy is used to compress a gas while its internal energy increases by 122 J. Determine the amount of energy leaving the system.
- 10.E: In a slow isothermal compression 3.45×10^4 J of work is done on an ideal gas. Determine the work done on the gas.
- 11.E: During a slow isothermal expansion 3.45×10^4 J of work is done by an ideal gas. Determine the work done by the gas.

12.C: Describe the equation $W = P\Delta V$.

13.E: An ideal gas in a piston is compressed from an initial volume of $1.87 \times 10^{-1} \, \text{m}^3$ to a final volume of $1.03 \times 10^{-1} \, \text{m}^3$ at a constant pressure of $4.04 \times 10^5 \, \text{Pa}$. The initial temperature of the ideal gas, before expansion, is 406 K. Determine the work done on the ideal gas and the final temperature of the ideal gas.

14.E: An ideal gas in a piston is expanded from an initial volume of 9.87×10^{-1} m³ to a final volume of 1.23×10^{0} m³ at a constant pressure of 3.03×10^{5} Pa. The initial temperature of the ideal gas, before expansion, is 398 K. Determine the work done by the ideal gas and the final temperature of the ideal gas.

- 15.C: Describe the equation $\Delta U = \frac{3}{2}Nk_{\rm B}\Delta T = \frac{3}{2}nR\Delta T$.
- 16.C: Define thermal equilibrium.
- 17.C: State the zeroth law of thermodynamics.

18.C: What does the area under a pressure vs. volume graph tell us?

a. Define *isothermal process*. Draw three *isothermal processes (isotherms)* on a *pressure vs. volume* graph.

b. Define *isobaric process*. Draw an *isobaric process* on a *pressure vs. volume graph*.

c. Define *isochoric/isovolumetric process*. Draw an *isochoric/isovolumetric* process on a *pressure vs. volume* diagram.

d. Define *adiabatic process*. Draw an *adiabatic process* on a *pressure vs. volume* graph.

- 19.E: A gas does 1.00×10^3 J of work while a closed system expands adiabatically. Determine the change in internal energy.
- 20.E: 1.23×10^3 J of work is done on a closed system during an adiabatic compression. Determine the change in internal energy.