|
Name: _ | |---------------| |
Class: | |
Due Date: | ## Physics Topic 19A - Newton's Law of Gravitation and Gravitational Field Strength Answer the following questions. The solutions to this worksheet can be found on the YouTube channel Go Physics Go. 1. C: State the names and describe the laws of Kepler's three laws of orbital motion. 2. C: Define Newton's Law of Gravitation $\vec{F}_g = m_1 \vec{g} = \frac{Gm_1m_2}{r^2}$. Units? 3. C: A satellite in space moves in a counterclockwise circle around the Earth with a constant speed at a radius r from the center of the Earth. Label the direction of the velocity, force, and acceleration of the satellite in the diagram below. - 4. C: The force of gravity between a satellite circling the Earth at a distance r at a constant speed is F_g . What will happen to the magnitude of the force of gravity between the satellite and the Earth if the satellite moves a distance - a. 2r. b. 3r. c. 4r. d. r/2. e. r/3. f. r/4. - 5. C: A satellite is moving in a circle with a constant speed around the sun. - a. Use Newton's second law of motion to obtain an equation for the speed of the satellite in terms of the mass of the sun M_{sun} , the mass of the satellite $M_{\text{satellite}}$, the distance of the satellite to the sun r, and the gravitational constant G. - b. Use your solution to obtain an equation for the period T of the satellite. | 6. | E: The mass of the Sun is approximately 1.99×10^{30} kg. The Earth is approximately 1.50×10^{11} m from the Sun. Use this information to determine | |----|--| | | a. the speed of the Earth in m/s andb. the period of the Earth in days. | | | | | | | | | | | | | | 7. | E: A satellite, which has a mass of 550. kg and a radius of 2.20 meters, is orbiting the Earth at an altitude of 375 km. | | | a. What will be the magnitude of the gravitational force between this satellite and the Earth? | | | | | | | c. What will be the magnitude of the centripetal acceleration of this satellite? | | d. | How long, in seconds, will it take for this satellite to orbit the Earth once? | |----|----|--| | 8. | C: | The following problem refers to gravitational field strength. | | | a. | Define gravitational field strength. Is it a scalar or a vector? | | | b. | What is the equation and what are the units for <i>gravitational field strength</i> ? Define and give the units of each variable. | | | c. | Between two objects where is the <i>gravitational field strength</i> zero? Between two objects where is the <i>gravitational field strength</i> maximum? | | | d. | What are the mathematical limits of gravitational field strength? Can gravitational field strength be positive? Negative? Zero? | - 9. E: The mass of the Earth is approximately 5.97×10^{24} kg and its radius is approximately 6.38×10^6 m. Use the equation $g = \frac{GM}{r^2}$ to determine the acceleration of gravity near the Earth's surface. - 10.C: Draw a *gravitational field strength vs. distance* graph for a planet with a radius *r*. 11.C: List some rules in drawing gravitational field lines. ## 12.C: Use a pencil and ruler! Draw gravitational field lines for each figure. What will be the gravitational field strength (both magnitude and direction) at a point a. 2d to the left of mass m_1 ? b. 2d to the right of mass m_1 ? c. 2d to the left of mass m_2 ? d. 2d to the right of mass m_2 ? 14.E: Earth has a mass of approximately 5.97×10^{24} kg while Mars has a mass of approximately 6.42×10^{23} kg. Both planets are separated by approximately 2.28×10^8 km and can be taken to be point particles. How many meters from Mars does a 3.00×10^3 kg white rhino have to be placed to feel no force? 15.E: A rock in space, which is initially at rest, has a mass $m_1 = 400$. kg and is 6.00×10^3 km away from two fixed rocks, each with a mass of 1.00×10^6 kg, as shown in the image below. What is the acceleration of m_1 at the moment when it is released from rest?