|    | Name:                                                                                                                                                                                |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Class:                                                                                                                                                                               |  |  |  |  |
|    | Due Date:                                                                                                                                                                            |  |  |  |  |
|    | Physics Topic 17A – Power and Efficiency                                                                                                                                             |  |  |  |  |
| A  | Answer the following questions. The solutions to this worksheet can be found on the YouTube channel Go Physics Go.                                                                   |  |  |  |  |
| 1. | C: Define power. Equation? Units?                                                                                                                                                    |  |  |  |  |
| 2. | E: Define efficiency. Equation? Units?                                                                                                                                               |  |  |  |  |
| 3. | E: John, who has a mass of 72 kg, climbed from an elevation of 3,100 m to the summit of Torrey's Peak at 4,300 m. The hike required 4.8 hours. Calculate the average power supplied. |  |  |  |  |
| 4. | <ul><li>E: A windlass raises a 200 kg anchor at 3 m/s.</li><li>a. Calculate the average power required.</li></ul>                                                                    |  |  |  |  |
|    | b. The motor is 40% efficient. Calculate the size of the engine.                                                                                                                     |  |  |  |  |

| 5. | lifts<br>59.4                                                                                                                                | n eight minutes, a conveyor belt, whose engine is 40.0% efficient, 160 crates, each having a mass of 30.0 kg. The belt, inclined at 49°, results in an elevation increase of 112 m. The crates start and at rest. Find the size of the engine required to run this belt. |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6. | E: Danny, who has a mass of 75.0 kg, is swimming at 2 m/s. The end is near. In four seconds, he accelerates to 14 m/s to win the gold medal. |                                                                                                                                                                                                                                                                          |  |
|    | a.                                                                                                                                           | Calculate the work he did during the four second sprint.                                                                                                                                                                                                                 |  |
|    | b.                                                                                                                                           | Calculate the average power during the sprint.                                                                                                                                                                                                                           |  |
|    | c.                                                                                                                                           | Calculate his acceleration.                                                                                                                                                                                                                                              |  |
|    | d.                                                                                                                                           | Calculate his velocity at three seconds into the sprint.                                                                                                                                                                                                                 |  |
|    | e.                                                                                                                                           | Calculate his instantaneous power at three seconds.                                                                                                                                                                                                                      |  |

| <ul> <li>7. E: Paige cruises at a constant 65 m/s in her 1,500 kg BMW up Mt. Soledad which is inclined at 30.51°.</li> <li>a. Calculate v<sub>v</sub>.</li> </ul>                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b. Calculate her instantaneous power.                                                                                                                                                                                               |
| <ul><li>8. E: Amber's 2,500 kg BMW accelerates from 8 m/s to 52 m/s in four seconds as it zooms up Pikes Peak whose elevation is 72 m and whose incline is 36.9°.</li><li>a. Calculate the total work done by the engine.</li></ul> |
| b. Calculate the average power for the entire trip.                                                                                                                                                                                 |
| c. Calculate $v_y$ three seconds into the trip.                                                                                                                                                                                     |
|                                                                                                                                                                                                                                     |

| d. | Calculate the instantaneous power three seconds after beginning to accelerate. |
|----|--------------------------------------------------------------------------------|
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |

- 9. E: The takeoff thrust of an airplane engine is approximately 514,000 N. This airplane can reach a speed of approximately 247 m/s. Calculate the power generated by the engine.
- 10.E: The height of the Burj Khalifah is approximately 830 m. A man with a mass of 65.0 kg takes approximately 1490 s to walk to the top of the building. Calculate the average power output.
- 11.E: A truck with a mass of 1250 kg travels eastward on a horizontal road. There is a constant resistive force of 325 N.
  - a. Calculate the power generated from the driving force when the truck has a speed of 12.0 m/s and an acceleration of 0.625  $\frac{m}{s^2}$ .

- b. Calculate the power of the constant resistive force.
- c. Calculate the time rate of change of the kinetic energy of the car.

12.E: A 15.0 kg box is pushed up a rough incline with an angle of 12.0 degrees with a constant speed of 1.25 m/s.



- a. Calculate the input power of the push if the output power of the push is 255 W with an efficiency of 25.0%.
- b. Calculate the rate of increase of the gravitational potential energy of the box.
- c. Calculate the value of the resistive force acting on the box.

- 13.E: A 70.0 kg man runs up an incline with a constant speed of 3.50 m/s which is 20.0° above the horizontal. A constant resistive force acting on the man is 13.5 N.
  - a. Label the forces on the man.



b. Calculate the power output of the man.

c. Calculate the power done against the gravitational force.

- 14.E: A 85.0 kg car engine is attached to a massless chain and pulled across a rough horizontal surface which has an average friction force of 125 N and is 40.0° above the horizontal. The car engine is pulled 625 m in five minutes.
  - a. Label the forces on the engine.



b. Determine the average value of the pulling force in which the engine moves at a constant speed.

c. Calculate the work done on the car engine.

d. Calculate the power used to move the car engine.

| lin        | A car starts from rest and accelerates at a constant rate in a straight e. The car experiences no friction. Draw a <i>power vs. time</i> graph of the ust force from the engine of the car.                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lin<br>inc | A car starts from rest and accelerates at a constant rate in a straight e. The car experiences air friction. The magnitude of the air friction creases as the speed of the car increases. Draw a <i>power vs. time</i> graph the thrust force from the engine of the car. |
| aco        | An object of mass 2.00 kg is pulled upward from rest with a constant celeration to 6.00 m/s in 3.00 s. Calculate the average power output of pulling force.                                                                                                               |
|            |                                                                                                                                                                                                                                                                           |

| E: An electric motor has an input power of 400. W. When doing work on an object 250. W of power is dissipated. Calculate the efficiency of the electric motor.                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E: 500. J of energy is absorbed and 400. J of energy is ejected in one cycle of a heat engine. Calculate the efficiency of the heat engine.                                                                                          |
| E: 455 J of work is done in one cycle on a heat engine while 825 J of energy is wasted. Calculate the efficiency of the heat engine.                                                                                                 |
| E: A machine is supplied an amount $Q$ of energy. The amount of useful work done is in the amount $W$ and the amount of energy wasted is $R$ . State an equation for the efficiency of the machine in terms of $Q$ , $R$ , and $W$ . |
|                                                                                                                                                                                                                                      |

22.E: An elevator lifts a mass *m* up with a constant speed over a distance *y*. The efficiency of the machine is 20.0%. State an equation for the input energy of the elevator.

23.E: The figure below shows an energy flow chart. State an equation for the efficiency of the system.



24.E: An object is pulled up an incline with a constant speed by an electric motor. The efficiency of the electric motor is 0.655. The object gains 185 J in gravitational potential energy. Calculate the amount of energy dissipated.

- 25.E: A solar panel has a surface area of 1.65 m<sup>2</sup> with an efficiency of 45.0%. The average intensity of radiation reaching the surface of the solar panel is  $325 \frac{W}{m^2}$ . Calculate the average power output of 30 of these solar panels.
- 26.E: A first set of solar panels with an efficiency of 30.0% acquire an area of A. A second set of solar panels with an efficiency of 35.0% acquire an area of B. Calculate the area of the second solar panels so both panels produce the same power output in the same conditions.
- 27.E: Calculate the efficiency of an elevator motor with an input power of 1820 W which raises a mass of 355 kg vertically with a constant speed of 0.225 m/s.
- 28.E: The efficiency of an elevator motor is 35.0% and its input power is 255 W. Calculate the vertical height the elevator motor will raise a 25.0 kg object in 3.50 s.
- 29.E: A 70.0 kg runner runs up an incline with a vertical height of 60.0 m in 355 s with a constant speed. Calculate the efficiency of the runner if the power input of the runner is 175 W.