Name:	
Class:	
Due Date:	
Physics Topic 16 – Specific Energy and Energy Density	
Answer the following questions. The solutions to this worksheet can be found on the YouTube channel Go Physics Go.	
1. Define energy density. Units?	
2. Define <i>specific energy</i> . Units?	
2. Define specific energy. Offics:	

3. The engine of an automobile has a useful power output of 40.0 kW with an efficiency of 55.0%. This engine consumes $1.00 \times 10^{-5} \text{ m}^3$ of petrol every

second. Calculate the energy density of the petrol.

4. The energy density of diesel gas is approximately $3.70 \times 10^{10} \frac{J}{m^3}$. Suppose that diesel gas provides a small city with 25% of useful energy. What is the volume of diesel gas needed to provide this small city with 6.78×10^{12} J of useful energy?

5. On average the output of a power plant in a small city is 500. MW. This power plant uses natural gas to heat up water to rotate its turbines. Natural gas has an energy density of approximately $3.60 \times 10^7 \frac{J}{m^3}$ and an efficiency of 30%. Determine the volume of natural gas being burned every second.