Name:	 	
Class:		
Due Date:		

Physics Topic 11C – Applying Newton's Second Law of Motion to Stacked Blocks

Answer the following questions. The solutions to this worksheet can be found on the YouTube channel Go Physics Go.

1. C: A pulling force is applied to a block on a rough horizontal surface. Draw a graph which shows the *force of friction vs. applied force* acting on the block.

- 2. E: A block with mass m_2 is sitting on a horizontal frictionless table. On top of that block is another block of mass m_1 . The coefficient of static friction between the two blocks is μ . A pulling force F_{pull} is applied to m_1 so both blocks accelerate to the right.
 - a. Use a pencil! Label the forces on each object.

- b. When the pulling force is small the two blocks move together. Determine an equation for the acceleration of the two blocks.
- c. If the pulling force F_{pull} is too great then the two blocks do not move together. Determine an equation for the minimum pulling force F_{pull} in which m_1 slides relative to m_2 .

- 3. E: A block with a mass $m_2 = 5.00$ kg is sitting on a horizontal table. On top of m_2 is another block of mass $m_1 = 3.00$ kg. The coefficient of kinetic friction between m_2 and the surface is $\mu_{2,s} = 0.500$. A pulling force of 70.0 N is applied to m_2 so both blocks accelerate to the right.
 - a. Use a pencil! Label the forces on each object.

b. Calculate the minimum coefficient of static friction between the two blocks so m_1 does not slip.

- 4. E: A block with mass $m_2 = 6.00$ kg is sitting on a horizontal frictionless table. On top of m_2 is another block of mass $m_1 = 3.00$ kg. The coefficient of static friction between the two blocks is $\mu = 0.650$. A pulling force F_{pull} is applied to m_1 so both blocks accelerate to the right.
 - a. Use a pencil! Label the forces on each object.

b. Determine the magnitude of the maximum force F_{max} which results in both of the blocks moving together without slipping.

c. If the pulling force $F_{\rm pull}$ is too great then the two blocks do not move together. Determine an equation for the minimum pulling force $F_{\rm pull}$ in which m_1 slides relative to m_2 .

- 5. E: A block of mass $m_1 = 3.00$ kg rests above the flat horizontal surface of a block with a mass $m_2 = 6.00$ kg. Mass m_2 rests on a smooth frictionless horizontal surface. The coefficient of static friction between m_1 and m_2 is $\mu_{\rm static} = 0.200$ while the coefficient of dynamic/kinetic friction between m_1 and m_2 is $\mu_{\rm dynamic} = 0.100$. A pulling force of 7.00 N is applied to the right of mass m_1 .
 - a. Use a pencil! Label the forces on each object.

b. Determine the direction and magnitude of the acceleration of m_2 .

- 6. E: A block of mass $m_2 = 45.0$ kg is placed on a smooth frictionless horizontal table. Another block of mass $m_1 = 15.0$ kg is placed on top of m_2 . The coefficient of static friction between m_1 and m_2 is 0.600 and the coefficient of dynamic/kinetic friction is 0.400. A pulling force is applied to m_2 .
 - a. Use a pencil! Label the forces on each object.

b. Calculate the acceleration of m_1 when a pulling force of 400. N is applied to m_2 .

- 7. E: Mass m_1 rests on top of mass m_2 . A pulling force on mass m_2 acts towards the right. The coefficient of static friction between m_1 and m_2 is $\mu_{1,2}$. The coefficient of dynamic friction between m_2 and the horizontal surface is $\mu_{2,s}$.
 - a. Label the forces on each object.

- b. Both masses are moving to the right together with a constant velocity. Determine the force of friction from the surface on m_2 .
- c. Now both masses are moving to the right together with a constant acceleration. Determine an equation for the maximum F_{pull} in which m_1 does not slip.