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1.1.1 Introduction 
A few years ago, I enjoyed one of the most impressive movies I had ever watched, Interstellar, directed 
by Christopher Nolan. In the movie, Cooper and his crews were attempting to travel to a mysterious 
wormhole adjacent to Jupiter in order to reach another solar system that was said to have suitable living 
condition for the mankind. Therefore, to reach the wormhole, the protagonists implemented a type of 
space-traveling method called a gravitational sling-shot in which the spacecraft utilizes the force of 
gravity to accelerate itself so that large amounts of fuels will be reserved. After watching the movie, I 
soon found my curiosity in the relationship between a planet and the smaller celestial bodies surrounding 
it. As a matter of fact, the sling-shot effect reminded me of the countless meteorites that had hit our 
planet’s ground. Hence, I decided to investigate the relationship between a planet and a smaller object that 
is in motion and to explore the nature of Kepler constant. 

Since the 16th century, Western philosophers and scientists started to fancy the doom hanging above our 
heads. However, unlike ancient thinkers that established their theories of the space based on spiritual 
interpretations and creative imaginations, scholars in this period started to conduct investigations dwelling 
on the foundation of sophisticated experiments and calculations. Thus, in 1618, Johannes Kepler 
developed his three laws of planetary motion. 

1.1.2 Kepler’s Laws of Planetary Motion 

Kepler’s first law of planetary motion implied that all the planets are orbiting around the Sun on their own 
elliptical routes, and the Sun had to be located on one of the focal points of the ellipse as shown in Figure 
1; the second law demonstrated that for a given time period, the line that connect the Sun and the planet 
would sweep across a fixed area, regardless the location of the planet on the orbit as seen in Figure 1. 
Hence,  𝑆!" = 𝑆#$ = 𝑆%&. 

 
Figure 1. Kepler’s first & second law of planetary motion. 

For this investigation, I will mostly focus on exploring Kepler’s third law of planetary motion, and further 
determine the nature of the Kepler Constant k. Nevertheless, before starting the exploration, definitions of 
the physical quantities involved shall be stated to clarify the following steps and hypothesis. 
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As planets orbit around the Sun following elliptical orbits, their routes can be plotted: 

 
Figure 2. Properties of an Ellipse 

In Figure 2, an elliptical orbit has two foci, a major axis and a minor axis. I will make the assumption 
supported by Kepler’s first law of planetary motion that the center of revolution, which is usually a sun or 
a planet, should be located at one of the foci in its orbit. Also, half the length of the axis is called semi-
major axis and semi-minor axis. However, throughout this investigation, I will only be using semi-major 
axis, denoted by 𝑎. Moreover, there are some quantities involved in the investigation. The period of 
revolution will be denoted as 𝑇. Also, the gravitational constant 𝐺 will be assumed to be 
6.667 × 10'((𝑁𝑚)𝑘𝑔'). 

Kepler’s third law of motion discusses the relationship between a planet and the object revolving around 
it, and the relationship between the physical quantities in its own orbit. Hence, my research question is 
presented below. 

1.2 Research Question 

What Is the Relationship between an Object, its Orbital Center, as-well-as the Nature of the Kepler 
Constant k in Planetary Motion? 

1.3 Hypothesis 

The cube of the length of the semi-major axis is directly proportional to the square of the period of 
revolution, the ratio k only depends on the mass of the orbital center, calculated by 𝑮𝑴

𝟒𝝅𝟐
. 

2.1 Variable Table 
Table 1 below shows the variables appear in this paper. 

VARIABLES DEFINITIONS 
𝑎 Length of semi-major axis 
𝑘 Kepler constant 
𝐺 Gravitational constant 
𝑇 Period of revolution 
𝑀 Mass of the center 
𝑙 Distance from center 
𝑣 Initial Velocity 



2.2.1 Materials 

The following materials will be used to conduct this IA 
• A hula-hoop with diameter of 94 cm  
• A sheet of Latex, large enough to cover the opening of the hula-hoop  
• Iron ball with mass of 1390 g 
• Steel weights of 50g, 100g and 200g (see Figure 4) 
• Marbles 
• Stop Watch, with uncertainty of 0.01s 
• Laptop’s camera 
• Black Ink (see Figure 3) 
• Tape measure with uncertainty of 0.05cm (see Figure 6) 
• Vernier caliper with uncertainty of 0.05mm (see Figure 5) 
• Handmade wooden slide 

Note: initial force was adjusted by discharging the marbles from prelabelled height on the wooden 
slide. 

                                 
Figure 3. Black Ink.     Figure 4. Steel Weights. Figure 5. Vernier Caliper.  Figure 6. Tapeline. 

2.2.2 Ethical and Safety Concerns 
The iron balls and the steel weights used in this investigation are heavy and rigid, so be cautious with the 
items to prevent them from falling on people’s feet. 

2.3.1 Relationship between Initial Velocity and Period of Revolution  
The independent variable is initial velocity of the marbles, achieved by changing the height in which the 
marbles were released. The dependent variable is the period of revolution, measured by stop watch. 

The controlled variables are： 

1. Mass of the center object 

Reason: Changes in the mass of the center object will change the slope of the depression, thereby may 
affect the results of the experiment. 

Method: Maintain the mass of the center object as 1390 g throughout the experiment. 



2. Distance from the center 

Reason: Changes in the distance from the center would affect the length of semi-major axis of the orbit, 
which might influence the measurement. 

Method: Placing the slide at a fixed distance away from the center horizontally. 

2.3.2 Procedure of Collecting Data 
1. Stretch the Latex on the hula-hoop. 
2. Place the steel ball with mass of 1390g on the sheet. 
3. Dip the marble in black ink to make sure it can leave a clear trace on the sheet. 
4. Use slide to discharge the marble at a fixed distance from the center. 
5. At the same time, start the stop watch. 
6. Pause the stop watch when the marble completes its first revolution. 
7. Record the data and repeat steps 2-6 four more times. 
8. Change the applied force to low/medium/high using the slide. Repeat steps 2-8 five times. 

   
Figure 7. Left: Setup for the experiment. Right: Zoom-in image of the slide. 

2.3.3 Results/Raw Data 

Table 2 shows the relationship between period and initial speed. Column 1 shows the initial speed of 
the marble. Column 3 shows the period of revolution. Rows 2-4 tell us the speed of the marbles 
released. 

Initial Speed Trials Period of Revolution (±0.01s) 
High 1 1.56 

 2 1.50 
 3 1.56 

Medium 4 1.47 
 5 1.47 
 6 1.50 

Low 7 1.50 
 8 1.46 
 9 1.47 



The table above shows part of the raw data (see Appendix I). It indicated a brief relationship between the 
marbles’ initial speed and period of revolution. However, when taking a close look into these values, we 
might find it interesting that there wasn’t an apparent correlation between the two variables. In order to 
test if these variables were statistically insignificant, hence proving the absence of correlation, I decided 
to implement the p-test by using a calculator online. 

As the P-value occurred to be 0.1011, which is larger than the significance level of 0.05, this difference is 
considered to be statistically not significant. Hence, we may conclude that there is no cause-effect 
relationship between the initial speed and period of revolution. 

2.4.1 Proving Kepler’s Third Law of Planetary Motion 
The independent variable is the length of the orbit’s semi-major axis, it was achieved by placing the slide 
at different distances from the center object (20cm, 25cm, 30cm, 35cm, 40cm). The dependent variable is 
the period of revolution, recorded and measured by Logger Pro. 

The controlled variables are: 

1. Mass of the center object (see 2.3.1) 
2. Initial speed 

Reason: Though it is proven that, theoretically, initial speed of the marble displays no role in affecting 
period of revolution, it would be more secure to eliminate the possible errors, brought by changing initial 
velocities, that reduce the precision of the results. 

Method: Release marbles at the medium height labelled on the slide. 

2.4.2 Procedure of Collecting Data 
1. Same as step 1-3 in the previous experiment 
4. Use the slide to discharge the marble at a radius 20cm from the center 
5. Same as step 5-7 in the previous experiment 
8. Change the distance to 25cm, 30cm, 35cm, 40cm. Repeat steps 2-7 

2.4.3 Establishing Coordinate Surface to Determine the Length of Semi-major Axis 
As previously explained, the path taken by planets appear to be elliptical. Thus, there has to be a semi-
major axis in the orbit. Nevertheless, the ellipses left by the marbles with black ink were only a minute 
part of the whole orbit that it supposed to be in vacuum space. Therefore, I decided to measure the length 
of the semi-major axis by establishing a coordinate system using PowerPoint.  

Firstly, after completing all the trials for the experiment, place the latex on a flat surface. Then, measure 
the distance between the center object and one end of the orbit’s major axis by implementing a vernier 
caliper with uncertainty of ±0.05𝑚𝑚. Eventually, export the image to PowerPoint, analyze it by placing 
a full ellipse on the image, and calculate the length of the semi-major axis implementing geometry.  



 
Figure 8. Elliptical Orbit on PowerPoint; Labelled by the Candidate. 

On PowerPoint, once I determined the most suitable ellipse for each image, I would be able to construct a 
coordinate surface that reflected the relationship between the distance I measured, which was the distance 
between the focus and the orbit, according to Kepler’s first law, and the semi-major axis of the actual 
orbit of the marble. Consequently, as long as I know the actual distance measured and could acquire the 
ratio of it to the length of semi-major axis on PowerPoint, I am capable of calculating the actual length of 
the semi-major axis.  

2.4.4 Results/Raw Data 

Table 3 below shows the relationship between the length of the semi-major axis a and the period of 
revolution T. Column 1 shows the distance from the orbital center (iron ball). Column 2 shows the 
length of semi-major axis. Column 3 shows the average period of revolution (see Appendix II). Rows 
2-6 demonstrate the actual distance from the orbital center (iron ball). 

Distance from Center 
(±0.5𝑐𝑚) 

Length of Semi-major Axis 
(±0.005𝑐𝑚) 

Av. Period of Revolution 
(±0.002𝑠) 

20.0 17.090 1.266 
25.0 19.380 1.278 
30.0 22.740 1.305 
35.0 25.920 1.348 
40.0 28.540 1.396 

Graph 1 below shows the change in period of revolution (T) to the length of semi-major axis (a). 

 



By simply illustrating the diagram of the relationship between 𝑇 and 𝑎, I found that these two variables 
are not directly proportional to each other. However, after fitting a regression line, I found that 𝑇 and 𝑎 
appeared as the following cubic relationship: 

𝑦 = 0.000018 ∙ 𝑥! − 0.000475 ∙ 𝑥" + 0.004361 ∙ 𝑥 + 1.24068  

Thus, a diagram representing the Change in T) in respect to a. was laid out (see Appendix II). 

Graph 2 below shows the change in 𝑎. in respect to 𝑇). 

 

Referencing to Graph 2, I can draw the conclusion that the cube of the length of semi-major axis is 
directly proportional to the square of the period of revolution. This finding corresponds to the hypothesis 
previously made; hence the ratio will be denoted as	𝑘 in the rest of the paper. However, it is not 
guaranteed that this curve is accurately obeying Kepler’s original graph and calculation because:  

1. The latex I used and the space in which the experiment was conducted are yielding resistance on 
the marble. Therefore, it is a systematic error that adds inaccuracy to the raw data.  

2. The slope created by the concaved latex made it harder for me to launch the marble; in fact, at 
35cm and 40cm from the center, the marble disposed actually bounced at the beginning of the rotation. 
Therefore, it is a random error that reduces precision of the raw data.  

2.5.1 Literature Review, Graph Analysis and Calculation to Determine the Expression of 𝒌. 

According to Figure 8 and NASA, there is a perihelion (closest distance between the Sun and the planet) 
and an aphelion (farthest distance between the Sun and the planet) in a planetary orbit. Thus, the mean 
distance of perihelion and aphelion is going to be the length of semi-major axis for a planet in the solar 
system. With reference to the Planetary Fact Sheet presented by NASA (see Appendix III), I was able to 
lay out some possible correlations in a real-world context:  
 
 
 
 



Table 4. The Value of k for Planets in the Solar System. (Excluded Neptune & Pluto). 
Planet Distance from Sun (106 km) Orbital Period (days) 𝒂𝟑

𝑻𝟐: 	(𝐤𝐦𝟑

𝐝𝐚𝐲𝟐& ) 

Mercury 57.9 88.0 25.0652 
Venue 108.2 224.7 25.0886 
Earth 149.6 365.2 25.1034 
Mars 228.0 687.0 25.1126 

Jupiter 778.5 4331.0 25.1536 
Saturn 1432.0 10747.0 25.4246 
Uranus 2867.0 30589.0 25.1856 

Graph 3 below shows the change in 𝑻𝟐 in respect to 𝒂𝟑 in the solar system. 

 

Figure 13 and the third column of Table 3 suggest the idea that the major planets in the solar system obey 
the law of planetary motion proved in the previous section. However, as NASA also presented the data 
for Moon (which is rotating around the Earth), there tends to be an interesting phenomenon. Since the 
center of rotation for Moon is the Earth, the perihelion and aphelion were measured as the distance from 
Earth. Therefore, the value of k for Moon is calculated as below: 

𝒌𝒎𝒐𝒐𝒏 =
𝒂𝟑

𝑻𝟐
=
𝟎. 𝟑𝟖𝟒𝟑

𝟐𝟕. 𝟑𝟐
= 𝟎. 𝟎𝟎𝟎𝟕𝟓𝟕𝟗𝒌𝒎

𝟑

𝒅𝒂𝒚𝟐G  

Comparing to the average value of k for planets orbiting around the Sun, the Moon tends to have a 
significantly lower k. This discovery leads me to fancy if the constant k might be affected by the mass of 
the Sun in which an object is orbiting around, meaning that the reason for Moon to have such a tiny k is 
because it is simply orbiting around the Earth rather than the Sun itself.  

Originally, I was thinking of conducting the third experiment by varying the mass of the center object on 
the latex. Nevertheless, as in the school’s lab I could only make minute changes, if any, on the mass of the 
center object, the results would demonstrate a mere correlation that k varies in respect to mass. Thus, I 
decided to use mathematical calculation, combined with Kepler’s First & Second Law of planetary 
motion, to prove my hypothesis. The following steps are conducted: 



If the perihelion and aphelion of an orbit are denoted as A and B, with C denoting the center object, then 
𝒗𝒂 and 𝒗𝒃 represent the instantaneous speeds that tangent to the elliptical orbit. Hence, the areal velocity 
at A and B are calculated by: 

𝑺𝑨 =
𝟏
𝟐
(𝒓𝒂 × 𝒗𝒂) =

𝟏
𝟐
(𝒂 − 𝒄) × 𝒗𝒂 

𝑺𝑩 =
𝟏
𝟐
(𝒓𝒃 × 𝒗𝒃) =

𝟏
𝟐
(𝒂 + 𝒄) × 𝒗𝒃 

Note: a is the length of semi-major axis, c is the distance between center object and orbital center. 𝑆! and 𝑆" are 
the areal velocity of A and B separately. 

As stated by Kepler’s Second Law of planetary motion (see section 1.1.2), 𝑺𝑨 = 𝑺𝑩, so by establishing an 
equation, 𝒗𝒃 is calculated as:  

𝒗𝒃 =
𝒂 − 𝒄
𝒂 + 𝒄

⋅ 𝒗𝒂 

The mechanical energy 𝑬 of a planet is the sum of its total kinetic and potential energy. Given that 𝑬𝑨 =
𝑬𝑩 due to the law of conservation of energy, we have:  

𝑬𝑨 =
𝟏
𝟐
𝒎𝒗𝒂𝟐 −

𝑮𝑴𝒎
𝒂− 𝒄

= 𝑬𝑩 =
𝟏
𝟐
𝒎𝒗𝒃𝟐 −

𝑮𝑴𝒎
𝒂+ 𝒄

 

Hence, 

𝟏
𝟐
𝒎U𝒗𝒂𝟐 − 𝒗𝒃𝟐V = 𝑮𝑴𝒎(

𝟏
𝒂 − 𝒄

−
𝟏

𝒂 + 𝒄
) 

By replacing 𝒗𝒃 with 𝒗𝒂, we have: 

𝒗𝒂 = W
(𝒂 + 𝒄)𝑮𝑴
𝒂(𝒂 − 𝒄)

 

Therefore,  

𝑺𝑨 = 𝑺𝑩 = 𝑺 =
𝒃
𝟐
W𝑮𝑴
𝒂

 

Note: b is the length of semi-minor axis, it is calculated by √𝒂𝟐 − 𝒄𝟐. 

 



Since the area of an ellipse is 𝝅𝒂𝒃, the period of revolution is therefore: 

𝑻 =
𝝅𝒂𝒃
𝑺

= 𝟐𝝅𝒂Z
𝒂
𝑮𝑴

 

After squaring both sides, 

𝒂𝟑

𝑻𝟐
=
𝑮𝑴
𝟒𝝅𝟐

= 𝒌 

Therefore, it is proven mathematically that the value of k only depends on the mass M of the center. 

4.1 Conclusion 
To sum up with, after conducting two experiments along with a theoretical calculation process regarding 
Kepler’s law of planetary motion, the two stated hypothesis are mostly answered as it was proven by 
Graph 2 that, during planetary motion, the square of the period of revolution is directly proportional to 
the cube of the length of semi-major axis. Combining the results from the first experiment, Graph 3, and 
the calculation process after that, I will also be able to generate the thesis that the value of the ratio 
(denoted k) is changing IFF (if and only if) the mass of the center object, in the case of the solar system, 
the Sun, is changing. Therefore, I believe that, despite some occurrence of inaccuracy and imprecision 
during the experiments, the investigation as a whole has supported my hypothesis to a considerable 
extent. Nevertheless, in order to reach perfection in certain parts during the exploration, there are still 
some issues which could be adjusted so that a more satisfying outcome would come through. 

4.2 Errors and Limitations of the Investigation 

As long as we know the exact expression of Kepler constant and the mass of the center object, we would 
be able to determine the exact value of k. Therefore, the slope resulted from experiment 1, which should 
equal to k, could be compared with the calculated actual value as below: 

𝒌 =
𝑮𝑴
𝟒𝝅𝟐

=
𝟔. 𝟔𝟔𝟕 × 𝟏𝟎'𝟏𝟏𝑵𝒎𝟐𝒌𝒈'𝟐 × 𝟏. 𝟑𝟗𝟎𝒌𝒈

𝟒𝝅𝟐
≈ 𝟐. 𝟑𝟒𝟕 × 𝟏𝟎'𝟏𝟐𝒎

𝟑

𝒔𝟐:  

In comparison, the slope in Graph 2 is 51055.2. However, this value has a unit of 𝒄𝒎𝟑

𝒔𝟐8 , so the slope 

becomes 𝟓. 𝟏𝟎𝟔 × 𝟏𝟎%𝟐𝒎𝟑

𝒔𝟐8 . The huge difference between the actual value and the measured value 
indicates that some significant limitations and errors that affected the precision and accuracy of the raw 
data were occurring in my experiment.  

First of all, in contrast with Kepler’s observation of planetary motion in space, the experiments I 
conducted allowed the presence of resistance. In space, planets are strictly obeying Kepler’s law of 
planetary motion due to the absence of air resistance. However, the marble in my experiment was 
experiencing resistive force from both the air and latex. This, as a matter of fact, resulted in increase in 
systematic errors, thereby boost the inaccuracy of the raw data. Furthermore, the marble was even 
bouncing on the latex once it was launched in some trials of the experiment, in which doubtlessly added 
uncertainties to the data collected, and provided a significantly inaccurate regression line in Graph 2. 



Furthermore, during the experiment, I made the assumption that when the marble passed through the line 
that connects the center object and the location where the it was disposed (shown in Figure 9), it 
completed half of the full rotation period, hence the distance between the intersection point and the initial 
location would be measured as the orbit’s major axis.  

 
Figure 9. Demonstration of the Intersection Point.  

Nevertheless, in practical planetary motion, the Earth is revolving around the Sun without falling to it 
because the Sun itself is also moving—due to attraction from its own Sun in the middle of the galaxy—in 
front of the Earth. Therefore, the Earth is able to sustain a stable pattern of rotation which has its identical 
period and length of semi-major axis. Nonetheless, in the experiment the marble was guaranteed to 
descend into the center object. This slight difference may result in distortion of the original orbit of the 
marble as it could not maintain on its stable pattern of revolution. Thus, the assumption previously made 
may not be accurate, and due to the inclusion of cubic value in the expression of k, this slight inaccuracy 
could cause tremendous changes in the final result. 

Lastly, the limitation of the experiments was due to the minute mass of the iron ball in comparison with 
the mass of a planet, the expression of k could only be proven theoretically using Kepler’s first and 
second laws of planetary motion instead of directly proven by the raw data collected since the changes in 
k with respect to the changes in mass of the center object was too insignificant to be observed and 
measured. Therefore, the last part of the investigation was completely based on literature review and 
hypothetical analysis using mathematical calculations. Unfortunately, this was inevitable because it is 
impossible to establish an object that has the mass significant enough for experimenters to determine the 
relationship between mass and the value of k.  

4.3 Suggested Methods for Improvement 

Due to the nature of the Kepler’s law of planetary motion, there are not many effective adjustments for us 
to make in a school lab in order to acquire a perfect final result. However, there are still some plausible 
suggestions that will increase the precision of the data collected. 

In experiment 2, I only conducted one trial for each distance from the center for the sake of convenient 
collection process and clarity of the data because with the marble dipped into ink, the trace left on the 
latex would get tangled together if excessive trials were conducted. However, this led to the decrease in 
precision of the final data since it was guaranteed that random errors would occur during the collection 



process. Therefore, I think that with the help of Photoshop or some video-editing software, it will be 
possible for me to abandon the use of ink during the experiments as such software are able to follow the 
marble automatically so that an outline of the trace will be plotted. This enables me to conduct each trial 
more than once in order to reduce random errors, hence enhance the precision of the data, especially when 
Graph 2 illustrated that the third datapoint was obviously distant from the regression line. 

However, there are few, if any, possible adjustments I could conduct to make the experiments more 
accurate. Therefore, even though the results did provide me with a brief insight of the connections 
involved within an elliptical orbit, they failed to match the actual results generated from proper, accurate 
experiments. The graceful truth that dwells in between the stars is probably only available for us when we 
observe it relentlessly with curiosity, just like what Kepler did a few centuries ago. 
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Appendix I 

Period of Revolution (measured by stopwatch) under different Initial Velocities 

Initial Velocity Trials Period of Revolution 
(±𝟎. 𝟎𝟏𝒔) 

High 1 1.56 
2 1.5 
3 1.56 
4 1.54 
5 1.53 

Medium 6 1.47 
7 1.55 
8 1.5 
9 1.53 
10 1.53 

Low 11 1.5 
12 1.46 
13 1.57 
14 1.47 
15 1.52 

 

Appendix II 

Distance from the 

center (cm) 

Period of revolution 

(±𝟎. 𝟎𝟎𝟐𝒔) 

Length of semi-major 

axis (±𝟎. 𝟎𝟎𝟓𝒄𝒎) 

Distance from the 

center (±𝟎. 𝟎𝟎𝟓𝒔) 

20 1.266 17.090 14.460 

25 1.278 19.380 13.790 

30 1.305 22.740 15.530 

35 1.348 25.920 17.400 

40 1.396 28.540 16.320 

 



Appendix III 

Planetary Fact Sheet. 

 Source: https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html 

 


