Name:	
Class:	
Due Date:	

B.3 Gas Laws

Understandings

- Pressure is given by $P = \frac{F}{A}$ where F is the force exerted perpendicular to the surface.
- The amount of substance *n* as given by $n = \frac{N}{N_A}$ where N is the number of molecules and N_A is the Avogadro constant.
- Ideal gases are described in terms of the kinetic energy and constitute a modeled system used to approximate the behavior of real gases.
- The ideal gas law equation can be derived from the empirical gas laws for constant pressure, constant volume, and constant temperature as given by $\frac{PV}{T}$ = constant.
- The equations governing the behavior of ideal gases as given by $PV = nk_BT$ and PV = nRT.
- The change in momentum of particles due to collisions with a given surface gives rise to pressure in gases and, from that analysis, pressure is related to the average translational speed of molecules as given by $P = \frac{1}{3}\rho v^2$.
- The relationship between the internal energy U of an ideal monatomic gas and the number of molecules or amount of substance as given by $U = \frac{3}{2}Nk_{\rm B}T$ or $U = \frac{3}{2}RnT$.
- The temperature, pressure, and density conditions under which an ideal gas is a good approximation of a real gas.

Equations

$$P = \frac{F}{A}$$

$$N = \frac{N}{N_{A}}$$

$$\frac{PV}{T} = \text{constant}$$

$$PV = nRT = Nk_{B}T$$

$$P = \frac{1}{3}\rho v^{2}$$

$$U = \frac{3}{2}nRT = \frac{3}{2}Nk_{B}T$$

The solutions can be found on the YouTube channel Go Physics Go:

https://www.youtube.com/@gophysicsgo/playlists

Part 1: Use your favorite sources to answer the following questions

- 1. C: Define and give the units for each variable for *pressure* $P = \frac{F}{A}$. Is it a scalar or vector? Do not confuse pressure *P* with power *P* or momentum \vec{p} or density ρ !
- 2. E: The surface area of an average human male foot is approximately 651 cm². Determine the pressure on each foot of a 75.0 kg man standing on both feet.
- 3. C: Define Avogadro's constant N_A .
- 4. C: Define and give the units for each variable for a mole $n = N/N_A$.
- 5. E: Determine the number of molecules in 3.25 moles of O_2 .
- 6. E: Determine the number of moles of 1.47×10^{26} particles.

- 7. E: Consider H_2O .
 - a. What is the molar mass of H_2O ?
 - b. How many moles are in 50.0 grams of H_2O ?
 - c. How many grams are in 18.0 moles of H_2O ?
- 8. E: Consider CO₂.a. What is the molar mass of CO₂?
 - b. How many moles are in 26.0 grams of CO_2 ?
 - c. How many grams are in 32 moles of CO_2 ?
- 9. E: Consider CH₄.
 - a. What is the molar mass of CH_4 ?
 - b. How many moles are in 46.0 grams of CH_4 ?
 - c. How many grams are in 146 moles of CH_4 ?
- 10.C: Define and give the units of atomic mass unit u.

11.C: State some characteristics of an *ideal gas*.

12.C: What are some differences between an *ideal gas* and a *real gas*?

13.C: Define and draw a graph showing Boyle's Law.

14.C: Define and draw a graph showing Charles' Law.

15.C: Define and draw a graph showing Gay-Lussac's Law.

- 16.C: Take *Boyle's Law*, *Charles' Law*, and *Gay-Lussac's Law* to obtain a general equation for an ideal gas.
- 17.C: Define and give the units of each variable for the *Ideal Gas Law* PV = nRT.
- 18.C: Define and give the units of each variable for the *Ideal Gas Law* $PV = Nk_{\rm B}T$.
- 19.E: What is the number of moles of an ideal gas in 80.0 cm³ at room temperature of 20.0°C and a pressure of 1.00×10^5 Pa?
- 20.E: What is the volume of 22.0 moles of an ideal gas when it fills a cylinder at a temperature of 40.0° C and a pressure of 1.01×10^5 Pa?
- 21.E: What is the temperature of 0.255 moles of an ideal gas when it fills a volume of 225 cm³ at a pressure of 1.01×10^5 Pa?

22.E: Three moles of an ideal gas originally occupies a volume of $120. \text{ cm}^3$ with a pressure of 1.01×10^5 Pa at a temperature of 23.0° C. What will be its new volume if its pressure is held constant and its temperature increases to 35.0° C?

23.E: Five moles of an ideal gas originally occupies a volume of $160. \text{ cm}^3$ with a pressure of 1.01×10^5 Pa at a temperature of 23.0° C. What will be its new pressure if its volume is held constant and its temperature increases to 75.0° C?

24.E: Two moles of an ideal gas originally occupies a volume of 346. cm³ with a pressure of 1.01×10^5 Pa at a temperature of 30.0° C. What will be its new pressure if its volume increases to 362. cm³ and its temperature is held constant?

25.C: Define and give the units for each variable for the equation for the kinetic theory of an ideal gas $P = \frac{1}{3}\rho v^2$.

- 26.E: The density of air on Earth is approximately 1.29 $\frac{\text{kg}}{\text{m}^3}$ at a pressure of 1.01×10^5 Pa. Assume the air is an ideal gas. Determine the average speed of the air.
- 27.E: The density of air on Mars is approximately 0.200 $\frac{\text{kg}}{\text{m}^3}$ at a pressure of 610 Pa. Assume the air is an ideal gas. Determine the average speed of the air.
- 28.C: Define and give the units for each variable for the equation for the internal energy of an ideal monatomic gas $U = \frac{3}{2}nRT = \frac{3}{2}Nk_{\rm B}T$.

- 29.E: Determine the internal energy of 7.42 moles of an ideal gas at a temperature of 32.0°C.
- 30.E: Determine the internal energy of 2.84×10^{24} particles of an ideal gas at a temperature of 27.0°C.
- 31.E: Use the equation $\overline{E_K} = \frac{3}{2}k_BT$ to determine the average kinetic energy and speed of O₂ at a room temperature of 20.0°C. Assume O₂ is an ideal gas.

32.E: Use the equation $\overline{E_{\rm K}} = \frac{3}{2}k_{\rm B}T$ to determine the average kinetic energy and speed of CO₂ at a temperature of 23.0°C. Assume CO₂ is an ideal gas.