Name:	
Class:	
Due Date:	

E.3 Radioactive Decay

Understandings

- o Isotopes.
- o Nuclear binding energy and mass defect.
- o The variation of the binding energy per nucleon with nucleon number.
- \circ The mass-energy equivalence as given by $E = mc^2$ in nuclear reactions.
- The existence of the strong nuclear force, a short-range, attractive force between nucleons.
- o The random and spontaneous nature of radioactive decay.
- The changes in the state of the nucleus following alpha, beta, and gamma radioactive decay.
- The radioactive decay equations involving α , β^- , β^+ , and γ .
- The existence of neutrinos ν and antineutrinos $\bar{\nu}$.
- The penetration and ionizing ability of alpha particles, beta particles, and gamma rays.
- o The activity, count rate, and half-life in radioactive decay.
- The changes in activity and count rate during radioactive decay using integral values of half-life.
- o The effect of background radiation of count rate.

Equations

$$E = mc^2$$

$$\lambda = \frac{hc}{E}$$

Additional HL Understandings

- o The evidence for the strong nuclear force.
- o The role of the ratio of neutrons to protons for the stability of nuclides.
- The approximate constancy of binding energy curve above a nucleon number of 60.
- The spectrum of alpha and gamma radiations provides evidence for discrete nuclear energy levels.
- o The continuous spectrum of beta decay as evidence for the neutrino.
- ο The decay constant λ and the radioactive decay law as given by $N = N_0 e^{-\lambda t}$.
- \circ The decay constant approximates the probability of decay in unit time only in the limit of sufficiently small λt .
- The activity as the rate of decay as given by $A = \lambda N = \lambda N_0 e^{-\lambda t}$.
- The relationship between half-life and the decay constant as given by $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$.

Additional HL Equations

$$N = N_0 e^{-\lambda t}$$

$$A = \lambda N = \lambda N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

The Evil Revealed in First US Nuclear Test: 74 Years Ago Over Bikini https://www.activistpost.com/2020/06/the-evil-revealed-in-first-us-nuclear-test-74-years-ago-over-bikini.html

MIT Scientists: Nuclear Fusion Energy Could Be Closer Than Thought https://oilprice.com/Alternative-Energy/Nuclear-Power/MIT-Scientists-Nuclear-Fusion-Energy-Could-Be-Closer-Than-Thought.html

The solutions can be found on the YouTube channel Go Physics Go:

https://www.youtube.com/@gophysicsgo/playlists

Use your favorite sources to answer the following questions

1.	Define isotope.
2.	Isotopes have the same properties but different properties.
3.	Define mass defect. Units?
4.	Which has more mass: two individual protons or two protons in the same nucleus?
5.	Define binding energy. Units?
6.	Use a pencil and ruler! Draw and label the <i>binding energy curve</i> . Label the horizontal and vertical axis. Label the most stable element.

7	Define	atomic	macc	unit	Unite?
1.	Denne	alomic	mass	unu.	Units?

8.	Use the equation $\Delta E = \Delta m \times c^2$ to find the energy equivalent of 1 u in Joules
	and $\frac{\text{MeV}}{r^2}$.
	and $\frac{1}{c^2}$.

9. Determine the binding energy per nucleon for a neutral carbon atom.

10. Define transmutation.

- 11. What happens in nuclear decay if the *mass difference* is positive? Is nuclear decay possible?
- 12. What happens in nuclear decay if the *mass difference* is negative? Is nuclear decay possible?

13.Describe the <i>strong nuclear force</i> .
14.Define random and spontaneous.
15. Radioactive decay is both and
16.Define alpha particle. What is it made of? Charge?
17. What is the difference between an <i>alpha particle</i> and a <i>helium atom</i> ?
18. Give two examples of <i>alpha decay</i> :
19.Define <i>neutrino</i> . What is it made of? Charge? Mass?
20.Define anti-neutrino. What is it made of? Charge? Mass?
21.Define <i>positron</i> . What is it made of? Charge? Mass?

22.Define beta plus particle. What is it made of? Charge? Mass?
23. What happens to a proton in a decaying nucleus during beta plus decay?
24. Give two examples of beta plus decay:
25.Define beta minus particle. What is it made of? Charge? Mass?
26. What is the difference between a beta minus particle and an electron?
27. What happens to a neutron in a decaying nucleus during <i>beta minus decay</i> ?
28. Give two examples of <i>beta minus decay</i> :
29. Why was the neutrino postulated?

30. What is the charge and mass of an electron? What is the charge and mass of a neutrino v?
31.Define gamma ray. What is it made of? Charge? Mass?
32. Why is it not correct to use the term gamma particle?
33. What is happening to an atom during gamma decay?
34. Give two examples of <i>gamma decay</i> : Gamma decay takes an excited and unstable atom and then makes it stable by releasing energy (as an electromagnetic wave) from the nucleus.
35.Define ionization.
36. Which particles have the most <i>ionizing ability</i> out of alpha particles, beta particles, and gamma rays?
37.Define to penetrate.
38.Define penetrating power. Which object can we use to stop an alpha particle? A beta particle? A gamma ray?

39. Define <i>activity</i> . Units? Use a pencil and ruler! Draw an activity vs. time graph for a radioactive/unstable element.
40.Define <i>count rate</i> . Units?
41.Define <i>half-life</i> . Units?
42. Define background radiation.

Additional HL Content

- 43. Why do stable nuclei have more neutrons than protons?
- 44. What is the ratio of neutrons to protons for stable nuclei?
- 45. Circle the correct answer: Alpha particles leave the nucleus with *continuous/discrete* energy levels.
- 46. Circle the correct answer: Beta minus particles leave the nucleus with *continuous/discrete* energy levels.
- 47. Circle the correct answer: Beta plus particles leave the nucleus with *continuous/discrete* energy levels.
- 48. Circle the correct answer: Gamma rays leave the nucleus with *continuous/discrete* energy levels.
- 49. What is the meaning and units of the *decay constant* λ ?

50. Describe and define the variables in the radioactive decay law equation $N(t) = N_0 e^{-\lambda t}$.

51. What is the meaning and units for *activity A*? Describe and define the variables in the equation $A(t) = \lambda N(t) = \lambda N_0 e^{-\lambda}$.

52. State the relationship between the half-life and the decay constant.