Name:	
Class:	
Class	
Due Date:	

E.1 Structure of the Atom

Understandings

- o The Geiger-Marsden-Rutherford experiment and the discovery of the nucleus.
- O Nuclear notation ${}_{Z}^{A}X$ where A is the nucleon number, Z is the proton number, and X is the chemical symbol.
- Emission and absorption spectra provide evidence for discrete atomic energy levels.
- o Photons are emitted and absorbed during atomic transitions.
- \circ The frequency of the photon released during an atomic transition depends of the difference in energy level as given by E = hf.
- Emission and absorption spectra provide information on the chemical composition.

Equations

$$E = hf$$

Additional HL Understandings

- The relationship between the radius and nucleon number for a nucleus as given by $R = R_0 A^{1/3}$ and implications for nuclear densities.
- o Deviations from Rutherford scattering at high energies.
- The distance of closest approach in head-on scattering experiments.
- The discrete energy levels in the Bohr model for hydrogen as given by $E = -\frac{13.6}{n^2}$ eV.
- The existence of quantized energy and orbits arise from the quantization of angular momentum in the Bohr model for hydrogen as given by $mvr = \frac{nh}{2\pi}$.

Additional HL Equations

$$R = R_0 A^{1/3}$$

$$E = -\frac{13.6}{n^2} \text{ eV}$$

$$mvr = \frac{nh}{2\pi}$$

The solutions can be found on the YouTube channel Go Physics Go:

https://www.youtube.com/@gophysicsgo/playlists

Use your favorite sources to answer the following questions

1. Draw and describe the main points of the *Thomson model of the atom*:

2. Describe the Geiger-Marsden-Rutherford experiment. Draw an image if you have to.

- 3. True or false: Your brain is mostly empty space.
- 4. Describe and draw the *Rutherford model of the atom*:

5. Which year were the following particles discovered?

Electron	Photon	Atomic Nucleus
Neutrino	Proton	Neutron

- 6. Define nucleon number A.
- 7. Define atomic number Z.
- 8. Define nucleon.
- 9. Define nuclide.

10.Define discrete and continuous.
11. Circle the correct answers in italic font: Free electrons have <i>continuous/discrete</i> energy. Bound electrons in an atom have <i>continuous/discrete</i> energy.
12.Define ground state and excited state of an electron in an atom. Draw a figure.
13.Define transition.
14. Which has more energy: an electron in an atom which is close to its nucleus or an electron in an atom which is farther from its nucleus? Draw a figure.
gophysicsgo.com

15.Define absorption spectra. What happens to an electron in an atom during photon absorption? Draw a figure.
16.Define emission spectrum. What happens to an electron in an atom during photon emission? Draw a figure.
17. We use the equation $E = hf$ for <i>electromagnetic waves</i> . Define and give the units of each variable.

Additional HL Content

18. Give the meaning of the equation $R = R_0 A^{1/3}$ and define each variable.

19. What is the meaning of *nuclear density*? What is the value of the *nuclear density*?

20.Use Newton's second law of motion, the equation for total energy, the equation for angular momentum $\vec{L} = r \times \vec{p}$, and the assumption that the angular momentum of an electron orbiting a hydrogen atom is quantized: $mvr = n\left(\frac{h}{2\pi}\right)$ to derive the equation for the energy of an electron orbiting a hydrogen atom is $E_{\rm electron} \approx -\frac{13.6}{n^2} \ {\rm eV}.$

- 21. What is the meaning of the equation $E = \frac{-13.6 \text{ eV}}{n^2}$?
- 22.Describe the *Bohr model of the atom*.