Name: \qquad

Class: \qquad

Due Date: \qquad

C. 1 Simple Harmonic Motion

Understandings

- Conditions that lead to simple harmonic motion.
- The defining equation of simple harmonic motion as given by $a=-\omega^{2} x$.
- A particle undergoing simple harmonic motion can be described using time period T, frequency f, angular frequency ω, amplitude, equilibrium position, and displacement.
- The time period in terms of frequency of oscillation and angular frequency as given by $T=\frac{1}{f}=\frac{2 \pi}{\omega}$.
- The time period of a mass-spring system as given by $T=2 \pi \sqrt{\frac{m}{k}}$.
- The time period of a simple pendulum as given by $T=2 \pi \sqrt{\frac{l}{g}}$.
- A qualitative approach to energy changes during one cycle of an oscillation.

Equations

$a=-\omega^{2} x$
$T=\frac{1}{f}=\frac{2 \pi}{\omega}$
$T=2 \pi \sqrt{\frac{m}{k}}$
$T=2 \pi \sqrt{\frac{l}{g}}$

Additional HL Understandings

- A particle undergoing simple harmonic motion can be described using phase angle.
- Problems can be solved using the equations for simple harmonic motion as given by
- $x=x_{0} \sin (\omega t+\phi)$
- $v=\omega x_{0} \cos (\omega t+\phi)$
- $v= \pm \omega \sqrt{x_{0}{ }^{2}-x^{2}}$
- $E_{\mathrm{T}}=\frac{1}{2} m \omega^{2} x_{0}{ }^{2}$
- $E_{\mathrm{p}}=\frac{1}{2} m \omega^{2} x^{2}$

Additional HL Equations

$x=x_{0} \sin (\omega t+\phi)$
$v=\omega x_{0} \cos (\omega t+\phi)$
$v= \pm \omega \sqrt{x_{0}{ }^{2}-x^{2}}$
$E_{\mathrm{T}}=\frac{1}{2} m \omega^{2} x_{0}{ }^{2}$
$E_{\mathrm{p}}=\frac{1}{2} m \omega^{2} x^{2}$
If you are interested in learning more about waves then please read the book Vibrations and Waves by George C. King.

The solutions can be found on the YouTube channel Go Physics Go:

https://www.youtube.com/@gophysicsgo/playlists

Part 1: Use your favorite sources to answer the following questions

1. Define oscillation.
2. Give three examples of oscillations.
3. Define periodic.
4. Define period. Units?

The period is the time it takes for an oscillating object to complete one oscillation (or revolution). Period is given in seconds.
5. Define amplitude. Units?
6. Define frequency. Units?
7. What is the mathematical relationship between the frequency and period of a wave?
8. State the equation for the angular frequency for an object undergoing simple harmonic motion.
9. Topic A. 1 Review: The slope of a displacement vs. time graph tells us the
\qquad of an object while the slope of a velocity vs. time graph tells us the \qquad of an object.
10.Topic A. 2 Review: Define equilibrium.
11.Give the name, define, and give the units of each variable from Hooke's Law $\vec{F}=-k \times \Delta \vec{x}$.
12.A mass lying on a smooth horizontal surface is attached to a spring and is stretched from its equilibrium position. It is then released. Label the forces on the mass.

Equilibrium
13. Use a pencil and ruler! Draw and label an acceleration vs. displacement graph for simple harmonic motion.
14.Derive the defining equation of simple harmonic motion $a=-\omega^{2} x$.
15. What are the main characteristics of simple harmonic motion?
16.Derive the equation for the time period of a mass-spring system $T=2 \pi \sqrt{\frac{m}{k}}$.
17. State the equation for the time period of a simple pendulum.
18. Use a pencil and ruler! Draw two waves which are in phase.
19. Use a pencil and ruler! Draw two waves which are out of phase by 180°.
20. Use a pencil and ruler! Draw two waves which are out of phase by 90°.
21.Use a pencil! The total energy of a simple harmonic oscillator is given by the equation $E_{\mathrm{T}}=E_{\mathrm{k}}+E_{\mathrm{p}}=\frac{1}{2} m v^{2}+\frac{1}{2} k \Delta x^{2}=$ constant. In the figure below label the locations of

$E_{\mathrm{k}, \max }$	$E_{\mathrm{k}, \min }=0 \mathrm{~J}$	$E_{\mathrm{p}, \max }$	$E_{\mathrm{p}, \min }=0 \mathrm{~J}$
$a_{\max }$	$a_{\min }=0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	$v_{\max }$	$v_{\min }=0 \frac{\mathrm{~m}}{\mathrm{~s}}$

Equilibrium
22. What is the mathematical relationship between the energy and amplitude of an object in simple harmonic motion?
23. Use a pencil and ruler! Draw an energy vs. displacement graph for a mass on a spring with three curves: a potential energy vs. displacement curve, a kinetic energy vs. displacement curve, and a total energy vs. displacement curve.
24. Use a pencil and ruler! Draw an energy vs. time graph during one oscillation for a mass on a spring with three curves: a potential energy vs. displacement curve, a kinetic energy vs. displacement curve, and a total energy vs. displacement curve.

Additional HL Understandings

25. Math review: Describe the significance of the variables A, B, C, and D in the equation $y=A \sin (B x+C)+D$.
26.Derive the equations of motion, energy, and speed for simple harmonic motion.

For a mass on a spring:

Optional for math lovers

The small angle approximation $\left(\theta<10^{\circ}\right)$ for the period of a pendulum is given in the physics data booklet: $T=2 \pi \sqrt{\frac{l}{g}}$

The exact solution is given from the video below:

Exact Solution of the Nonlinear Pendulum
Flammable Maths
https://www.youtube.com/watch?v=efvT2iUSjaA

Watch and take notes from the video above.

