Name:	
Class:	
Due Date:	

B.3 Gas Laws

Understandings

- Pressure is given by $P = \frac{F}{A}$ where F is the force exerted perpendicular to the surface.
- The amount of substance n as given by $n = \frac{N}{N_A}$ where N is the number of molecules and N_A is the Avogadro constant.
- o Ideal gases are described in terms of the kinetic energy and constitute a modeled system used to approximate the behavior of real gases.
- The ideal gas law equation can be derived from the empirical gas laws for constant pressure, constant volume, and constant temperature as given by $\frac{PV}{T}$ = constant.
- The equations governing the behavior of ideal gases as given by $PV = nk_BT$ and PV = nRT.
- O The change in momentum of particles due to collisions with a given surface gives rise to pressure in gases and, from that analysis, pressure is related to the average translational speed of molecules as given by $P = \frac{1}{3}\rho v^2$.
- The relationship between the internal energy U of an ideal monatomic gas and the number of molecules or amount of substance as given by $U = \frac{3}{2}Nk_BT$ or $U = \frac{3}{2}RnT$.
- The temperature, pressure, and density conditions under which an ideal gas is a good approximation of a real gas.

Equations

$$P = \frac{F}{A}$$

$$N = \frac{N}{N_{\rm A}}$$

$$\frac{PV}{T}$$
 = constant

$$PV = nRT = Nk_{\rm B}T$$

$$P = \frac{1}{3}\rho v^2$$

$$U = \frac{3}{2}nRT = \frac{3}{2}Nk_{\rm B}T$$

The solutions can be found on the YouTube channel Go Physics Go:

https://www.youtube.com/@gophysicsgo/playlists

Part 1: Use your favorite sources to answer the following questions

- 1. Define and give the units for each variable for *pressure* $P = \frac{F}{A}$. Is it a scalar or vector? Do not confuse pressure P with power P or momentum \vec{p} or density ρ !
- 2. Define Avogadro's constant N_A .
- 3. Define and give the units for each variable for a mole $n = N/N_A$.
- 4. Define and give the units of atomic mass unit u.
- 5. State some characteristics of an ideal gas.

6.	What are some differences between an ideal gas and a real gas?
7	Define and draw a graph showing <i>Boyle's Law</i> .
·	Define and draw a graph showing boyie s baw.
8.	Define and draw a graph showing Charles' Law.

9. Define and draw a graph showing Gay-Lussac's Law.
10. Take <i>Boyle's Law</i> , <i>Charles' Law</i> , and <i>Gay-Lussac's Law</i> to obtain a general equation for an ideal gas.
11. Define and give the units of each variable for the <i>Ideal Gas Law PV</i> = nRT .
12. Define and give the units of each variable for the <i>Ideal Gas Law PV</i> = Nk_BT .

13. Define and give the units for each variable for the equation for the kinetic theory of an ideal gas $P = \frac{1}{3}\rho v^2$.

14. Define and give the units for each variable for the equation for the internal energy of an ideal monatomic gas $U = \frac{3}{2}nRT = \frac{3}{2}Nk_BT$.

15. What is the average kinetic energy and speed of O_2 at room temperature 20°C? Assume O_2 is an ideal gas.

- 16. What is the molar mass of H_2O ?
- 17. How many moles are in 50 grams of H₂O?
- 18. How many grams are in 20 moles of H₂O?
- 19. What is the number of moles of an ideal gas in 80 cm³ at room temperature of 20°C and a pressure of 10⁵ Pa?

20. Three moles of an ideal gas originally occupies a volume of 120 cm³ with a pressure of 10⁵ Pa at a temperature of 23°C. What will be its new volume if its pressure is held constant and its temperature increases to 35°C?