Name: \qquad

Class: \qquad

Due Date: \qquad

B. 3 Gas Laws

Understandings

- Pressure is given by $P=\frac{F}{A}$ where F is the force exerted perpendicular to the surface.
- The amount of substance n as given by $n=\frac{N}{N_{\mathrm{A}}}$ where N is the number of molecules and N_{A} is the Avogadro constant.
- Ideal gases are described in terms of the kinetic energy and constitute a modeled system used to approximate the behavior of real gases.
- The ideal gas law equation can be derived from the empirical gas laws for constant pressure, constant volume, and constant temperature as given by $\frac{P V}{T}=$ constant.
- The equations governing the behavior of ideal gases as given by $P V=n k_{\mathrm{B}} T$ and $P V=n R T$.
- The change in momentum of particles due to collisions with a given surface gives rise to pressure in gases and, from that analysis, pressure is related to the average translational speed of molecules as given by $P=\frac{1}{3} \rho v^{2}$.
- The relationship between the internal energy U of an ideal monatomic gas and the number of molecules or amount of substance as given by $U=\frac{3}{2} N k_{\mathrm{B}} T$ or $U=\frac{3}{2} R n T$.
- The temperature, pressure, and density conditions under which an ideal gas is a good approximation of a real gas.

Equations

$P=\frac{F}{A}$
$N=\frac{N}{N_{\mathrm{A}}}$
$\frac{P V}{T}=$ constant
$P V=n R T=N k_{\mathrm{B}} T$
$P=\frac{1}{3} \rho v^{2}$
$U=\frac{3}{2} n R T=\frac{3}{2} N k_{\mathrm{B}} T$

The solutions can be found on the YouTube channel Go Physics Go:

https://www.youtube.com/@gophysicsgo/playlists

Part 1: Use your favorite sources to answer the following questions

1. Define and give the units for each variable for pressure $P=\frac{F}{A}$. Is it a scalar or vector? Do not confuse pressure P with power P or momentum \vec{p} or density ρ !
2. Define Avogadro's constant N_{A}.
3. Define and give the units for each variable for a mole $n=N / N_{A}$.
4. Define and give the units of atomic mass unit u.
5. State some characteristics of an ideal gas.
6. What are some differences between an ideal gas and a real gas?
7. Define and draw a graph showing Boyle's Law.
8. Define and draw a graph showing Charles'Law.
9. Define and draw a graph showing Gay-Lussac's Law.
10.Take Boyle's Law, Charles' Law, and Gay-Lussac's Law to obtain a general equation for an ideal gas.
11.Define and give the units of each variable for the Ideal Gas Law $P V=n R T$.
12.Define and give the units of each variable for the Ideal Gas Law $P V=N k_{\mathrm{B}} T$.
13.Define and give the units for each variable for the equation for the kinetic theory of an ideal gas $P=\frac{1}{3} \rho v^{2}$.
14.Define and give the units for each variable for the equation for the internal energy of an ideal monatomic gas $U=\frac{3}{2} n R T=\frac{3}{2} N k_{\mathrm{B}} T$.
10. What is the average kinetic energy and speed of O_{2} at room temperature $20^{\circ} \mathrm{C}$? Assume O_{2} is an ideal gas.
11. What is the molar mass of $\mathrm{H}_{2} \mathrm{O}$?
12. How many moles are in 50 grams of $\mathrm{H}_{2} \mathrm{O}$?
13. How many grams are in 20 moles of $\mathrm{H}_{2} \mathrm{O}$?
14. What is the number of moles of an ideal gas in $80 \mathrm{~cm}^{3}$ at room temperature of $20^{\circ} \mathrm{C}$ and a pressure of $10^{5} \mathrm{~Pa}$?
15. Three moles of an ideal gas originally occupies a volume of $120 \mathrm{~cm}^{3}$ with a pressure of $10^{5} \mathrm{~Pa}$ at a temperature of $23^{\circ} \mathrm{C}$. What will be its new volume if its pressure is held constant and its temperature increases to $35^{\circ} \mathrm{C}$?
