Name:	
Class:	
Due Date:	

B.1 Thermal Energy Transfers

Understandings

- o Molecular theory in solids, liquids, and gases.
- Density ρ as given by $\rho = \frac{m}{V}$.
- o Kelvin and Celsius scales are used to express temperature.
- The change in temperature of a system is the same when expressed with the Kelvin or Celsius scales.
- o The internal energy of a system is the total intermolecular potential energy arising from the forces between the molecules plus the total random kinetic energy of the molecules arising from their random motion.
- o Temperature difference determines the direction of the resultant thermal energy transfer between bodies.
- A phase change represents a change in particle behavior arising from a change in energy at constant temperature.
- O Quantitative analysis of thermal energy transfers Q with the use of specific heat capacity c and specific latent heat of fusion and vaporization of substances L as given by $Q = mc\Delta T$ and Q = mL.
- Conduction, convection, and thermal radiation are the primary mechanisms for thermal energy transfer.
- o Conduction in terms of the difference in the kinetic energy of particles.
- O Quantitative analysis of rate of thermal energy transfer by conduction in terms of the type of material and cross-sectional area of the material and the temperature gradient as given by $\frac{\Delta Q}{\Delta t} = kA\frac{\Delta T}{\Delta x}$.
- Qualitative description of thermal energy transferred by convection due to fluid density differences.
- Quantitative description of thermal energy transferred by convection due to fluid density differences.
- Quantitative analysis of energy transferred by radiation as a result of the emission of electromagnetic waves from the surface of a body, which in the case of a black body can be modeled by the Stefan-Boltzmann law as given by

 $L = \sigma A T^4$ where L is the luminosity, A is the surface area, and T is the absolute temperature of the body.

- \circ The concept of apparent brightness b.
- Luminosity L of a body as given by $b = \frac{L}{4\pi d^2}$.
- The emission spectrum of a black body and the determination of the temperature of the body using Wien's displacement law as given by $\lambda_{\max} T = 2.9 \times 10^{-3}$ mK where λ_{\max} is the peak wavelength emitted.

Equations

$$\rho = \frac{m}{V}$$

$$\overline{E_{\rm k}} = \frac{3}{2} k_{\rm B} T$$

$$Q = mc\Delta T$$

$$Q = mL$$

$$\frac{\Delta Q}{\Delta t} = kA \frac{\Delta T}{\Delta x}$$

$$L = \sigma A T^4$$

$$b = \frac{L}{4\pi d^2}$$

$$\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ mK}$$

If you are interested in learning more about thermal physics then please read the book *Concepts in Thermal Physics* by Stephen J. Blundell and Katherine M. Blundell.

Visiting the coldest town in the world - Chilling Out | 60 Minutes Australia 60 Minutes Australia

https://www.youtube.com/watch?v=l1noUh2NrLI

The hottest place on Earth | 60 Minutes Australia

60 Minutes Australia

https://www.youtube.com/watch?v=bdeOZ6rJ36Q

The solutions can be found on the YouTube channel Go Physics Go:

https://www.youtube.com/@gophysicsgo/playlists

Part 1: Use your favorite sources to answer the following questions

1.	Define <i>solid</i> . What are its characteristics?
2.	Define fluid.
3.	Define liquid. What are its characteristics?
4.	Define gas. What are its characteristics?
5.	Define and give the units for each variable for density $\rho = \frac{m}{v}$. Is it a scalar or vector? Do not confuse density ρ with power P or momentum \vec{p} or pressure p !
6.	Define diffusion.
7.	Which state of matter has the most potential energy: a solid, a liquid, or a gas?
8.	Define temperature.
9.	Define <i>Degrees Celsius</i> . What is the melting point and the boiling point of water in <i>degrees Celsius</i> ?

- 10.Define *Kelvin*. What is the melting point and the boiling point of water in Kelvin?
- 11. Define absolute zero.
- 12. Which has greater kinetic energy: 0 °C ice or 0 °C water? Which has greater potential energy?
- 13. Define and give the units for each variable of the equation for *Boltzmann's* constant $k_{\rm B} = \frac{R}{N_{\rm A}}$.
- 14. Define and give the units for each variable for the equation for the internal energy of an ideal gas $\overline{E_k} = \frac{3}{2} k_B T = \frac{3}{2} \frac{R}{N_A} T$.
- 15. Define thermal equilibrium.
- 16.Define heat.
- 17. Define internal energy.
- 18. Define phase change.

- 19. What does the equation $Q = mc\Delta T$ tell us? Define and give the units of each variable.
- 20.Define *melting*. Does an object gain potential energy or lose potential energy when it melts? What about kinetic energy?
- 21.Define *freezing*. Does an object gain potential energy or lose potential energy when it freezes? What about kinetic energy?
- 22. Define *vaporization/boiling*. Does an object gain potential energy or lose potential energy when it vaporizes/boils? What about kinetic energy?
- 23.Define *condensation*. Does an object gain potential energy or lose potential energy when it condenses? What about kinetic energy?
- 24. What does the equation $Q = mL_f$ tell us? Define and give the units of each variable.
- 25. What does the equation $Q = mL_v$ tell us? Define and give the units of each variable.

- 26. Moses has 500 grams of gold.
 - a. What is the specific heat capacity of gold in $\frac{J}{kg \times {}^{\circ}C}$? http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/sphtt.html
 - b. How much energy will it take to increase the temperature of solid gold by 50°C?
 - c. How much energy will be lost by solid gold if its temperature decreases by 50°C?
- 27. How much energy will be needed to increase the temperature of 0.8 kg of solid ice from minus 30°C to steam at plus 140°C? Draw a temperature vs. energy graph of this process.

28. Aaron drops a 6 kg gold block with a temperature of 20°C into a tub with 2 kg of liquid water at 90°C. What will be the final temperature of the system?

29. Define conduction, convection, and radiation. Give an example of each.

- 30. What is the difference between a *thermal conductor* and *thermal insulator*? Give an example of each.
- 31. Describe the equation $\frac{\Delta Q}{\Delta t} = kA \frac{\Delta T}{\Delta x}$.

32.Define absorb, reflect and emit.
33. Define <i>black body</i> .
34. State the definition, equation, and units for <i>emissivity</i> . What is the <i>emissivity</i> of a really dark colored object? What is the <i>emissivity</i> of a really light colored object?
35.Define luminosity L. Units?
36. What does the <i>Stefan-Boltzmann law</i> tell us? State the equation and define each variable in the <i>Stefan-Boltzmann law</i> .
37.Define <i>apparent brightness b</i> . Units? What is the mathematical relationship between <i>apparent brightness b</i> and <i>luminosity L</i> ?
gophysicsgo.com

38. What does *Wien's displacement law* tell us? State the equation and define each variable for *Wien's displacement law*. Draw and label a graph describing *Wien's displacement law*.